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A0 ST R AC T 

An analysis  is presented for  the development of the f iber  pat- 

t e r n s  necessa ry  to produce uniform fiber tension in  a spinning fi lamen- 

t a r y  disk. The family of f iber  pat terns  f o r  such isotensoid disks  is 

descr ibed in  t e r m s  of curvature ,  slope, and a r c  length, and means  a r e  

suggested f o r  obtaining polar-coordinate plots of the pat terns .  Included 

a r e  d iagrams of t h ree  of the patterns,  a photograph of a model, and a 

discussion of the genera l  charac te r i s t ics  of the  family of allowable pat- 

t e rns .  It was  found that the isotensoid disk design with which the disk 

is covered by uniform-diameter f ibe r s  operates at half t he  s t r e s s  of a 

s imple hoop, for  a given t ip  speed and fiber mass per  unit length. la,?W 



I .  NOMENCLATURE 

r - radius coordinate 

r - radius  of disk 

R - r/ro , nondimensional radius  coordinate 

6 -  

P -  

w - rotation speed of disk 

m -  

0 

angle between f iber  and radius  vector 

radius  of curvature  of f iber  

I mass per  unit length along f iber  

2 2  a -  m h  r / T  , f iber  loading pa rame te r  
0 

F 1  - interfiber shea r  force per  unit length 

T -  tension in  s t ruc tura l  f iber  

- e 

c p -  

4 

L -  

- 

- x 
- S 

- Y 

x -  
- V 

0 

angle swept by tangent t o  f iber  

central  angle coordinate 

a r c  length along fiber,  measured  f r o m  periphery of disk 

& / r  nondimensional a r c  length 

R2 , nondimensional radius  coordinate 

s t r e s s  in s t ruc tura l  f iber 

weight density of fiber ma te r i a l  

s l y  , 

t ip  speed of rotating disk 

0 

specific strength of f iber  
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I I .  INTRODUCTION 

This  note presents  the analytical development of a uniform- 

s t r e s s  (isotensoid) spinning disk composed of s t ruc tura l  f i laments of 

uniform c r o s s  section, The f i lamentary arrangement is that of a fine- 

mesh  c i rcu lar  net in which the f ibers  form curved load-carrying paths 

that sp i r a l  outward f r o m  the center .  

will c a r r y  a radially-directed loading in  such a way that the resultant 

f iber tension dec reases  toward the center of the net. 

dient is the resul t  of the sp i ra l  load-path curvature.  

result ing f r o m  the iner t ia  f o r c e s  due to rotation, on the other hand, 

tends to inc rease  toward the  center.  The constant-tension condition 

can be imposed by arranging for the curvature distribution to b e  that 

which is necessa ry  to  allow these  two tension-gradient effects to cancel. 

I t  can be  shown that any sp i r a l  net 

This  tension g r a -  

The fiber tension 

This  work may be  considered a n  extension of the work done 

in References 1 and 2. 

dicting equilibrium shapes of f i lamentary s t ruc tures  in  which the s t ruc -  

t u ra l  loads a r e  car3ied in  pure  tension. This paper  was  specifically 

concerned with normal  loads on the f iber  (i.  e . ,  p r e s s u r e  loads),  and 

the solutions were  presented in  t e r m s  of differential equations descr ib-  

ing the local  curva ture  and /o r  slope of the s t ruc tura l  wall in  t e r m s  of 

In Reference 1 a theory was developed for  p re -  

3 



the local conditions. 

include load components tangential to  the s t ruc tura l  wall  ( f rom centr i f -  

ugal effects),  and solutions for  the curva ture  and slope equations w e r e  

obtained in  the fo rm of elliptic integrals.  The present  note r ep resen t s  

a further generalization, in  that allowance is made fo r  a n  internally- 

generated shear  s t r e s s  in  the  f i lamentary wall. 

In Reference 2 this  problem was generalized to 

This type of s t ruc ture  is proposed for  space applications 

where requirements  exist  f o r  l a rge  rotating sur faces  in  which the loads 

generated by the mass of rotating s t ruc ture  a r e  important.  One such 

application is suggested by Reference 3,  which d iscusses  the use  of a 

lightweight woven fabric  net as a low-loading, low-temperature ,  rotat-  

ing wing for  r e -en t ry  deceleration. Other possible applications include 

the use  of f i lamentary disks  to support l a rge  sur faces  fo r  the collection 

o r  reflection of radiant energy. It is believed that a n  isotensoid disk 

of this type, in addition to having the excellent mechanical proper t ies  

character is t ic  of f i lamentary s t ruc tures ,  can be made to have a high 

s t ructural  efficiency. 

The work reported h e r e  was conducted with the financial  sup- 

port of the National Aeronautics and Space Administration. 
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Ill. DEVELOPMENT OF THE CURVATURE EQUATION 

The s t ruc ture  under consideration is a spinning f i lamentary 

disk having the fo rm of symmetr ica l  spiral  net with a differentially-fine 

mesh,  the clockwise-outward-directed f ibers  being attached point-by- 

point to the counterclockwise-outward f ibers .  

between opposing f ibe r s  i s  shown in Figure 1. 

radius  of curvature  R and mee t s  the radius vector  a t  a n  angle /3 . 

A typical intersect ion 

Each branch has a local 

The forces  acting on a differential length d4, of the clockwise- 

The tension forces ,  shown dashed, outward f iber  a r e  shown in F igure  2. 

a r e  added and resolved into forces  normal to and tangential  to  the f iber ,  

L T d & / p  and d T  . 
where m’ is the mass per  unit length. 

The radially-directed iner t ia  force  is m ’ W  r d t  , 

The force  F ’ d &  is the interf iber  

shear  force,  o r  the fo rce  exerted on the element of the clockwise- 

outward f iber  by the corresponding counterclockwise f iber .  This  force  

must  be  equal and opposite to the force on the counterclockwise element 

a t  this  point. F o r  reasons  of symmetry,  then, it mus t  lie in  the c i r -  

cumferent ia l  direction, normal  to the radius vector .  

F r o m  the  d iagram it can be seen that equilibrium requ i r e s  

that 

(1) 
1 2  T 

P 
m 0 r d4, s i n 6  t F’dC  COS^ = -d.C 
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and 

d T  d.C . m 0 r d &  c o s g  - F ’ d &  s i n p  = - 
d &  

1 2  

Equations (1) and (2)  can be simplified by calling 

2 2  m ’ u  r 
0 n z  

T 
( 3 )  

r 
r 

R = -  
0 

The uniform-stress  condition can be imposed by making n = c o n s t .  , 

assuming that the s t ruc tura l  c r o s s  section of the  f iber  is proportional 

t o  the m a s s  per  unit length. If it is assumed, fur ther ,  that m‘=const .  , 

then T = c o n s t .  , and 

= o  . d T  
d.C 
- 

Equations ( 1 )  and ( 2 )  then reduce to 

and 

(4) 

Equation (5) is sufficient t o  define the geometry of the  f iber  

It is possible to e s -  pattern fo r  any given value of the parameter  0 , 

tablish the family of patterns,  without fur ther  analytical work, f r o m  

this radius of curvature  equation by a graphical integration process  

using a compass and protractor ,  

6 



The s t ruc tura l  requirement for t ransfer r ing  shea r  between 

It should be noted that the  path f ibe r s  can be  seen  f r o m  Equation (6).  

of a given f iber  need not actually follow a continuous spiral ,  but may 

instead follow a zigzag pattern,  in the circumferent ia l  direction, be- 

tween adjacent c i r c l e s  of intersections.  

t he re  is no tendency for the intersection t o  sl ide,  and therefore  the re  

is no requireme~t fer t ransfer r ing  shear,  

F o r  th i s  type of f iber  pattern,  

7 



IV.  INTEGRATION OF CURVATURE EQUATION 

Equation (5) can be integrated to  give a relat ion for  p ( o r  

sin/$ a s  a function of r as follows: F r o m  F igure  3 it can  be  seen  that 

Al so ,  

Consequently, 

o r ,  

d r  t a n @  
d v  = d r  d e  = 

P C O S B  ' r 

(7) 

Equation (7)  can, of course,  be obtained f r o m  the  s tandard fo rm of the 

radius of curva ture  in  polar coordinates,  

bined direct ly  with Equation (5) to eliminate dB/d  r if (5)  is expressed 

This re la t ion can be com- 

in a differentiated form:  

d B  - R -  d P + S p  , 
d R  r 

c o s g  - = 
0 

d R  r 
0 

Equating (5a) to ( 7 )  and substituting Equation (5) to eliminate ,3 gives 

a separable l inear  differential  equation in  p ( R )  : 

In integrating this expression, the init ial  conditions are  taken as those 

at  the point at which the f iber  is tangent to  the outer  per iphery:  

a 



R = R = 1 , p = P o  = n/2 . Here p = r /In. These  conditions 

establish the upper limits for  the integration. 

0 0 0 

The lower limits are  

taken at the  generic  point along the  fiber curve. This  p rocess  gives  

1 for  the radius  of curvature  
i 

2 

2 2 0  R r 
0 

( 9 )  

~ 

If t h i s  expression is combined with Equation (5), it gives 

s in  2 = - sZR2 [1 t(T)+] 2 - ! a  , 
2 

Either  of Equations (9)  o r  (10)  suffices to  descr ibe  the  f iber  

pat tern fo r  graphical integration; Equation ( 9 )  may be used in a step- 

I wise forward integration with a compass,  while Equation (10) may be  

I used t o  construct  a slope field through which a continuous path may  be 

faired.  

9 



V. DETERMINATION OF ARC LENGTH 

The a r c  length 4, included between two points along the curve 

can be established by an  integration of the relation 

which can be  writ ten by inspection of F igu re  3. 

substituted fo r  s i n b  , and if  the  independent var iable  is changed to  

If Q u a t i o n  (10)  is 

L x = R , then the nondimensional a r c  length L can be expressed as 

the integral 

1 

This integral  i s  evaluated in  Reference 4. After accounting for  the 

l imits,  it  i s  possible to  express  the a r c  length as 

Equation (13) is extremely useful in making graphical constructions 

of fiber patterns,  in  that it provides a re ference  to  the s tar t ing point 

which is not affected by cumulative e r r o r s  in  the graphical  integra- 

tion process.  

10 



VI.  DETERMINATION OF CENTRAL ANGLE 

The determination of the central  angle cp is des i rab le  to  

complete the description of the fiber patterns.  

tion of R it is necessa ry  to integrate the expression (see F igure  3)  

To find cp as a func- 

s i n p  d &  d R  d(p = - -  
R d R  

If the  appropriate  expressions a r e  substituted into Equation (14) t o  

define d q  as a function of R and then the substitution x = R 

made, the resul t  is the  integral  

2 
is 

(1 5) 
1 

y dX C d x  

2 2 2 - x 4- f i x  - C ) ( x  + C) R 

- 1  . 2 
, c - -  sb where . 

These integrals  a r e  evaluated in Reference 5 in  t e r m s  of the  elliptic 

integral  of the third kind. 

from that for  the f2 2 cases  because of the difference in  the  nature  

of the roots  of the quart ic  under the radical. T h e r e  a r e ,  therefore ,  

four  different integrals  to b e  evaluated, each of which has  its own set  

of coefficients in  t e r m s  of the roots  of the quart ic .  

this  descr ipt ion of the curve family is somewhat unmanageable. 

ther  detai ls  of this  solution will therefore be omitted. 

The solution for  the C? > 2 cases  differs 

Consequently, 

F u r -  

11 



VI1 , DISCUSSION OF CURVE SHAPE 

Equations (9)  and (10) can be used t o  identify two distinct 

types of curves  in  the one-parameter  family which includes 0 2 1 . 

(Note that s Z <  1 produces a contradiction, s ince it gives p > r , 

which requires  that r = r 

These  two curve types a r e  bounded by 51 = 2 : 

increase with decreasing R , and for  R >  2 , p mus t  decrease .  The 

fo rmer  (n< 2)  condition produces a n  annular band of f iber  paths, as 

in Figure 4 ( 0 = 3 / 2 )  , which are  character ized by smooth, continuously- 

turning curves  that a r e  tangent a l ternately to  the  outer  per iphery and 

some inner periphery.  

by setting sinfl  = 1 in Equation (10). This  gives 

0 0  

be a local minimum instead of max imum. )  
0 

f o r  a<  2 , p must  

The  radius  of the inner per iphery can be found 

- - - 1 .  2 (16)  - 2 
62 R min  

F o r  0 = 1 Equation (9)  gives  p = r , which is s imply the c i rcu lar  
0 0  

hoop. 

The 52 = 2 c a s e  has  special  importance because  it is  the 

only case which includes the  or igin and therefore  covers  the disk. 

this  case, ,P= r / 2  = const. 

tangent to the per iphery and passing through the origin.  

which  is diagrammed in F igu re  5, was  the one chosen fo r  the model  

F o r  

, and the f iber  curve  is s imply a c i r c l e  
0 

This  pattern,  

12 



shown photographed in F igure  6. This pattern has  the somewhat star- 

tling property that it can be mapped, without changes in a r c  lengths, 

f r o m  a rectangular net having a length-to-width rat io  of four,  and con- 

sisting of square  meshes  at 45' to  the axis of the rectangle,  as shown 

in F igu re  7. 

paths, whose centers  a r e  displaced on the disk by a cent ra l  angle cp , 

in te rsec t  at values of a r c  length 4, 2 p ( p  = r cp ; for  a center  d i s -  

placement of 2 9  , the a r c  lengths t o  the intersect ions a r e  4, = 2 r  cp ; 

etc. 

This property a r i s e s  from the fact that two c i rcu lar  f iber 

0 

0 

The curves 0' 2 a r e  characterized by the fact  that  sinB 

and L) both vanish at  some value of R ; these  curves  have radially- 

directed cusps at a value of R which can be  determined by setting 

ei ther  p or  s i n 6  to  ze ro  in Equations (9)  o r  (10). This gives 

2 
min n 

= I - -  . 4 R 

Figure  8 shows the fiber pat tern for  0 = 3  . 

The 0 > 2 curves a r e  not s t ructural ly  self-  sufficient; each 

cusp mus t  be  supported by a radial  force of 2 T . These radial  forces  

could be  provided by radial  spokes, a hoop, o r  a fiber sys tem com- 

pr ised of any one of the !2> 1 curves properly truncated to  allow for  

res idual  radial  forces  at the truncation radius.  

The truncation process  can, of course,  be applied to both 

the inner  and outer per ipheries  of an  annular band of a sp i r a l  net. Such 



a band could be spliced at its two per ipheries  to other similar bands 

(having the s a m e  f iber  s t r e s s ,  for  example).  

boring bands would each have a different re ference  radius  r 

different . This  process ,  taken to  the l imit ,  could be used to  pro-  

duce a uni form-s t ress  disk using tapered fi laments.  

In general ,  these  neigh- 

and a 
0 

The parameter  52 establ ishes  the relation between t ip  speed 

v = 0 r and f iber  s t r e s s  s . The maximum t ip  speed (v  ) of which 

a disk of a given mater ia l  is  capable can be determined by substituting 

the specific strength X of the s t ruc tura l  ma te r i a l  for  the rat io  of break-  

ing strength T to  mass per  unit length, as follows: 

0 0 0  0 ult 

u It 

A = - . - =  ult Af Tult 
S 

*f m’g Y 

where y i s  the weight density of the ma te r i a l  and A 

sectiona a r e a  of the f iber .  

tion ( 3 ) ,  which defines , the ult imate t ip  speed is seen  to  be 

is the c r o s s -  
f 

If this  condition is substituted into Equa- 

(vO)Ult = .\/pxn. (19) 

Thus a higher S2 allows a higher ult imate t ip  speed. 

If the radius  of the hub is given, the choice of a i s  narrowed 

2 
to  a range of values given by Equation (10) by setting s in  B at the limits 

of 1 and 0. 

and (17). 

the hub radius  a t  a n  angle 0 which can be determined f r o m  Equation (10) 

Since the radial  component of f iber  tension, T cos fl  , must  be ca r r i ed  

These values of $2 a r e  those determined by Equations (16) 

F o r  intermediate values of !i2 the  f iber  curve  will in te rsec t  

14 



i 

by the hub, the load-carrying ability of the hub may  be  used to  de t e r -  

mine  0 uniquely. 

It should be  recognized that the conditions governing the  de- 

sign of f i  amentary  disks  f o r  use  as i tems of hardware  a r e  likely to  be 

such that the idealized disk analyzed here  is only a point of departure .  

As a n  example, i f  the  disk s t ruc ture  were required to support a ref lec-  

t ive surface,  then m’ would probably be dependent on radius. 

a case  the details  of the solution given here  will have to  be modified. 

The bas ic  curvature  equation is general ,  however, and solutions can be 

extracted fo r  any set  of conditions that can be defined explicitly in 

t e r m s  of radius.  

F o r  such 
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Figure 1 .  Local Geometry of Fiber Pattern. 

I F 'd4 

Figure 2 .  Forces on Fiber Element. 



Figure 3. Radius of Curvature in  Polar Coordinates. 

3 
Figure 4 .  Fiber Pattern for lsotensoid Disk, a= 2 . 
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Figure 5 .  Fiber Pattern for lsotensoid Disk, 52=2 . 

Figure 6. Photograph of Model lsotensoid Disk on Spin Stand. 
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Figure 7. Mapping of Rectangular N e t  into 52=2 Isotensoid Disk. 

Figure 8 .  Fiber Pattern for lsotensoid Disk, 0 = 3  . 
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